A Beginner’s Guide to AI Data Collection

Choosing the AI Data Collection Company for Your AI / ML Project


Ai training data Artificial intelligence is all about using machines to elevate the life and lifestyle of people by making their mundane lives interesting and redundant tasks simple. AI is never supposed to be a dominating force but a complementary one that works in tandem with humans to solve the implausible and pave the way for collective evolution.

As of now, we are treading on the right path with significant breakthroughs happening across industries with the help of AI. If you take healthcare for instance, AI systems accompanied by machine learning models are helping experts understand cancer better and come up with treatments for it. Neurological disorders and concerns like PTSD are being treated with the help of AI. Vaccines are being developed at rapid rates thanks to AI-powered clinical trials and simulations.

Not just healthcare, every single industry or segment that AI touches is being revolutionized. Autonomous vehicles, smart convenience stores, wearables like FitBit and even our smartphone cameras are able to capture better images of our faces with AI.

Thanks to the innovations happening in the AI space, companies are barging into the spectrum with various use cases and solutions. Due to this, the global AI market is anticipated to reach a market value of around $267bn by the end of 2027. Besides, around 37% of the businesses out there are already implementing AI solutions into their processes and products.

More interestingly, close to 77% of the products and services we use today are powered by AI. With the tech concept rising significantly across verticals, how do businesses manage to do impossible with AI?

Ai data collection

Ai data collection How do devices as simple as a watch accurately predict heart attacks in humans? How is it possible that cars and automobiles that have always required a driver suddenly go driver less on roads?

How do chatbots make us believe that we are talking to another human on the other side?

If you observe the answer to every question, it boils down to just one element – DATA. Data lies at the center of all AI-specific operations and processes. It is data that helps machines understand concepts, process inputs and deliver accurate results.

All the major AI solutions that are out there are all products of a crucial process we call data collection or data acquisition or AI training data.

This extensive guide is all about helping you understand what it is and why it is important.

What is AI Data Collection?

Machines don’t have a mind of their own. The absence of this abstract concept makes them devoid of opinions, facts and capabilities such as reasoning, cognition and more. They are just immovable boxes or devices occupying space. To turn them into powerful mediums, you need algorithms and more importantly data.

Ai data collection The algorithms that are developed need something to work on and process and that something is data that is relevant, contextual and recent. The process of collecting such data for machines to serve their intended purposes is called AI data collection.

Every single AI-enabled product or solution we use today and the results they offer stem from years of training, development and optimization. From devices that offer navigation routes to those complex systems that predict equipment failure days in advance, every single entity has gone through years of AI training to be able to accurately deliver results.

AI data collection is the preliminary step in the process of AI development that right from the beginning determines how effective and efficient an AI system would be. It is the process of sourcing relevant datasets from a myriad of sources that will help AI models process details better and churn out meaningful results.

Types of AI Training Data in Machine Learning

Now, AI data collection is an umbrella term. Data in this space could mean anything. It could be text, video footage, images, audio or a mix of all of these. In short, anything that is useful for a machine to perform its task of learning and optimizing results is data. To give you more insights on the different types of data, here’s a quick list:

Datasets could be from a structured or unstructured source. For the uninitiated, structured datasets are those that have explicit meaning and format. They are easily understandable by machines. Unstructured, on the other hand, are details in datasets that are all over the place. They don’t follow a specific structure or format and require human intervention to pull out valuable insights from such datasets.

Text Data

One of the most abundant and prominent forms of data. Text data could be structured in the form of insights from databases, GPS navigation units, spreadsheets, medical devices, forms and more. Unstructured text could be surveys, handwritten documents, images of text, email responses, social media comments and more.

Text data collection

Audio Data

Audio datasets help companies develop better chatbots and systems, design better virtual assistants and more. They also help machines understand accents and pronunciations to the different ways a single question or query could be asked in.

Audio data collection

Image Data

Images are another prominent dataset type that are used for diverse purposes. From self-driving cars and applications like Google Lens to facial recognition, images help systems come up with seamless solutions.

Image data collection

Video Data

Videos are more detailed datasets that let machines understand something in depth. Video datasets are sourced from computer vision, digital imaging and more.

Video data collection

How to Collect data for a Machine Learning?

Ai training data This is where things start to get a little tricky. From the outset, it would appear like you have a solution to a real-world problem in mind, you know AI would be the ideal way to go about it and you’ve developed your models. But now, you are in the crucial phase where you need to commence your AI training processes. You need abundant AI training data with you to make your models learn concepts and deliver results. You also need validation data to test your results and optimize your algorithms.

So, how do you source your data? What data do you need and how much of it? What are the multiple sources to fetch relevant data?

Companies assess the niche and purpose of their ML models and chart out potential ways to source relevant datasets. Defining the data type needed solves a major portion of your concern on data sourcing. To give you a better idea, there are different channels, avenues, sources or mediums for data collection:

Ai training data

Free Sources

Like the name suggests, these are resources that offer datasets for AI training purposes for free. Free sources could be anything ranging from public forums, search engines, databases and directories to government portals that maintain archives of information over the years.

If you don’t want to put too much effort into sourcing free datasets, there exists dedicated websites and portals like that of Kaggle, AWS resource, UCI database and more that will allow you to explore diverse
categories and download required datasets for free.

Internal Resources

Though free resources appear to be convenient options, there are several limitations associated with them. Firstly, you cannot always be sure that you would find datasets that precisely match your requirements. Even if they match, datasets might be irrelevant in terms of timelines.

If your market segment is relatively new or unexplored, there wouldn’t be many categories or relevant
datasets for you to download as well. To avoid the preliminary shortcomings with free resources, there
exists another data resource that acts as a channel for you to generate more relevant and contextual datasets.

They are your internal sources such as CRM databases, forms, email marketing leads, product or service-defined touchpoints, user data, data from wearable devices, website data, heat maps, social media insights and more. These internal resources are defined, set up and maintained by you. So, you could be sure of its credibility, relevance and recency.

Paid Resources

No matter how useful they sound, internal resources have their fair share of complications and limitations, too. For instance, most of the focus of your talent pool will go into optimizing data touch points. Moreover, the coordination among your teams and resources must be impeccable as well.

To avoid more such hiccups like these, you have paid sources. They are services that offer you the most useful and contextual datasets for your projects & ensure you consistently get them whenever you need.

The first impression most of us have on paid sources or data vendors is that they are expensive. However,
when you do the math, they are only cheap in the long run. Thanks to their expansive networks and data sourcing methodologies, you will be able to receive complex datasets for your AI projects regardless of how implausible they are.

To give you a detailed outline of the differences among the three sources, here’s an elaborate table:

Free ResourcesInternal ResourcesPaid Resources
Datasets are available for free.Internal resources could also be free depending on your operational expenses.You pay a data vendor to source relevant datasets for you.
Multiple free resources available online to download preferred datasets.You get custom-defined data as per your needs for AI training.You get custom-defined data consistently for as long as you require.
You need to work manually on compiling, curating, formatting and annotating datasets.You can even modify your data touch points to generate datasets with required information.Datasets from vendors are machine learning-ready. Meaning, they are annotated and come with quality assurance.
Stay cautious about licencing and compliance constraints on datasets you download.Internal resources become risky if you have a limited time to market for your product.You can define your deadlines and have datasets delivered accordingly.


How does bad data affect your AI ambitions?

We listed out the three most common data resources for the reason that you will have an idea on how to approach data collection and sourcing. However, at this point, it becomes essential to also understand that your decision could invariably decide the fate of your AI solution.

Similar to how high-quality AI training data can help your model deliver accurate and timely results, bad training data can also break your AI models, skew results, introduce bias and offer other undesirable consequences.

But why does this happen? Isn’t any data supposed to train and optimize your AI model? Honestly, no. Let’s understand this further.

Bad Data – What Is It?

Bad data Bad data is any data that is irrelevant, incorrect, incomplete or biased. Thanks to poorly-defined data collection strategies, most data scientists and annotation experts are forced to work on bad data.

The difference between unstructured and bad data is that insights in unstructured data are all over the place. But in essence, they could be useful regardless. By spending additional time, data scientists would still be able to extract relevant information from unstructured datasets. However, that’s not the case with bad data. These datasets contain no/limited insights or information that is valuable or relevant to your AI project or its training purposes.

So, when you source your datasets from free resources or have loosely established internal data touch points, chances are highly likely that you will download or generate bad data. When your scientists work on bad data, you’re not only wasting human hours but pushing the launch of your product as well.

If you’re still unclear about what bad data can do to your ambitions, here’s a quick list:

  • You spend countless hours sourcing the bad data and waste hours, effort and money on resources.
  • Bad data could fetch you legal troubles, if unnoticed and can bring down the efficiency of your AI
  • When you take your product trained on bad data live, it affects user experience
  • Bad data could make results and inferences biased, which could further bring backlashes.

So, if you’re wondering if there’s a solution to this, there is actually.

AI Training Data providers to the rescue

Ai training data providers to the rescue One of the basic solutions is to go for a data vendor (paid sources). AI training data providers ensure what you receive is accurate and relevant and you have datasets delivered to you in a structured form. You don’t have to be involved in the hassles of moving from portal to portal in search of datasets.

All you have to do is take in the data and train your AI models for perfection. With that said, we’re sure your next question is on the expenses involved in collaborating with data vendors. We understand that some of you are already working on a mental budget and that’s exactly where we’re headed too next.

Factors to consider when coming up with an effective Budget for your Data Collection Project

AI training is a systematic approach and that’s why budgeting becomes an integral part of it. Factors like RoI, accuracy of results, training methodologies and more should be considered before investing a massive amount of money into AI development. A lot of project managers or business owners fumble at this stage. They make hasty decisions that bring in irreversible changes in their product development process, ultimately forcing them to spend more.

However, this section will give you the right insights. When you’re sitting down to work on the budget for AI training, three things or factors are inevitable.

Budget for your ai training data

Let’s look at each in detail.

The volume of data you need

We’ve been saying all along that the efficiency and accuracy of your AI model depends on how much it is trained. This means that the more the volume of datasets, the more the learning. But this is very vague. To put a number to this notion, Dimensional Research published a report that revealed that businesses need a minimum of 100,000 sample datasets to train their AI models.

By 100,000 datasets, we mean 100,000 quality and relevant datasets. These datasets should have all the essential attributes, annotations and insights required for your algorithms and machine learning models to process information and execute intended tasks.

With this is a general rule of thumb, let’s further understand that the volume of data you need also depends on another intricate factor that is your business’ use case. What you intend to do with your product or solution also decides how much data you need. For instance, a business building a recommendation engine would have different data volume requirements than a company that’s building a chatbot.

Data Pricing Strategy

When you’re done finalizing how much data you actually need, you need to next work on a data pricing strategy. This, in simple terms, means how you would be paying for the datasets you procure or generate.

In general, these are the conventional pricing strategies followed in the market:

Data TypePricing Strategy
Image ImagePriced per single image file
Video VideoPriced per second, minute, an hour, or individual frame
Audio Audio / SpeechPriced per second, a minute, or hour
Text TextPriced per word or sentence

But wait. This is again a rule of thumb. The actual cost of procuring datasets also depend on factors like:

  • The unique market segment, demographics or geography from where datasets have to be sourced
  • The intricacy of your use case
  • How much data you need?
  • Your time to market
  • Any tailored requirements and more

If you observe, you’ll know that the cost to acquire bulk quantities of images for your AI project could be less but if you have too many specifications, the prices could shoot up.

Your Sourcing Strategies

This is tricky. Like you saw, there are different ways to generate or source data for your AI models. Common sense would dictate that free resources are the best as you can download required volumes of datasets for free without any complications.

Right now, it would also appear that paid sources are too expensive. But this is where a layer of complication gets added. When you’re sourcing datasets from free resources, you are spending an additional amount of time and effort cleaning your datasets, compiling them into your business-specific format and then annotating them individually. You’re incurring operational costs in the process.

With paid sources, the payment is one-time and you also get machine-ready datasets in hand at the time you require. The cost-effectiveness is very subjective here. If you feel you could afford to spend time on annotating free datasets, you could budget accordingly. And if you believe your competition is fierce and with limited time to market, you can create a ripple effect in the market, you should prefer paid sources.

Budgeting is all about breaking down the specifics and clearly defining each fragment. These three factors should serve you as a roadmap for your AI training budgeting process in the future.

Are you saving on expenses with in-house Data Acquisition?

Data acquisition While budgeting, we explored how free resources force you to spend more in the longer run. At that point, you would have automatically wondered about the cost-effectiveness of the in-house data acquisition process.

We know that you’re still hesitant about paid sources and that’s why this section will clear your skepticism about it and shed light on the hidden costs involved in in-house data generation.

Is In-house Data Acquisition Expensive?

Yes, it is!

Now, here’s an elaborate response. Expense is anything that you spend. While discussing free resources, we revealed you spend money, time & effort in process. This applies to in-house data acquisition as well.

Data acquisition expensive Because of the fact that you have custom-defined touch points or data funnels, it doesn’t mean you would have machine-ready datasets in the end. The data you generate will still be mostly raw and unstructured. You might have all the data you need in one place but what the data contains will be all over the place.

Ultimately, you would end up spending on paying your employees, data scientists, annotators, quality assurance professionals and more. You will also be spending on subscriptions for annotation tools and
maintenance of CMS, CRM and other infrastructure expenses.

Besides, datasets are bound to have bias and accuracy concerns, which you need to manually get them sorted. And if you have an attrition issue in your AI training data team, you will have to spend on recruiting new members, orienting them to your processes, training them to use your tools and more.

You will end up spending more than what you would eventually make in the longer run. There are also annotation expenses. At any given point of time, the total cost incurred to work with in-house data is:

Cost Incurred = Number of Annotators * Cost per annotator + Platform cost

If your AI training calendar is scheduled for months, imagine the expenses you would consistently incur. So, is this the ideal solution to data acquisition concerns or is there any alternative?

Benefits of an end-to-end AI Data Collection service provider

There is a reliable solution to this problem and there are better and less expensive ways to acquire training data for your AI models. We call them training data service providers or data vendors.

They are businesses like Shaip that specialize in delivering high quality datasets based on your unique needs and requirements. They take away all the hassles you face in data collection such as sourcing relevant datasets, cleaning, compiling and annotating them and more, and lets you focus only on optimizing your AI models and algorithms. By collaborating with data vendors, you focus on things that matter and on those you have control over.

Besides, you will also eliminate all the hassles associated with sourcing datasets from free and internal resources. To give you a better understanding of the advantage of an end-to-end data providers, here’s a quick list:

  1. Training data service providers completely understand your market segment, use cases, demographics and other specifics to fetch you the most relevant data for your AI model.
  2. They have the ability to source diverse datasets that deem fit for your project such as images, videos, text, audio files or all of these.
  3. Data vendors clean data, structure it and tag it with attributes and insights that machines and algorithms require to learn and process. This is a manual effort that requires meticulous attention to detail and time.
  4. You have subject matter experts taking care of annotating crucial pieces of information. For instance, if your product use case is in the healthcare space, you can’t get it annotated from a non-healthcare professional and expect accurate results. With data vendors, that’s not the case. They work with SMEs & ensure your digital imaging data is properly annotated by industry veterans.
  5. They also take care of data de-identification and adhere to HIPAA or other industry-specific compliances and protocols so you stay away from any and all forms of legal complications.
  6. Data vendors work tirelessly in eliminating bias from their datasets, ensuring you have objective results and inferences.
  7. You will also receive the most recent datasets in your niche so your AI models are optimized for optimal efficiency.
  8. They are also easy to work with. For instance, sudden changes in data requirements can be communicated to them and they would seamlessly source appropriate data based on updated needs.

With these factors, we firmly believe that you now understand how cost-effective and simple collaborating with training data providers is. With this understanding, let’s find out how you could choose the most ideal data vendor for your AI project.

Sourcing Relevant Datasets

Understand your market, use cases, demographics to source recent datasets be it images, videos, text, or audio.

Clean Relevant Data

Structure and tag the data with attributes and insights that machines and algorithms understand.

Data Bias

Eliminate bias from datasets, ensuring you have objective results and inferences.

Data Annotation

Subject matter experts from specific domains take care of annotating crucial pieces of information.

Data De-identification

Adhere to HIPAA, GDPR, or other industry-specific compliances and protocols to eliminate legal complexities.

How to choose the right AI Data Collection Company

Choosing an AI data collection company isn’t as complicated or time-consuming as collecting data from free resources. There are only a few simple factors you need to consider and then shake hands for a collaboration.

When you’re starting to look for a data vendor, we assume that you have followed and considered whatever we’ve discussed so far. However, here’s a quick recap:

  • You have a well-defined use case in mind
  • Your market segment and data requirements are clearly established
  • Your budgeting is on point
  • And you have an idea of the volume of data you need

With these items checked off, let’s understand how can you look for an ideal training data service provider.

Ai data collection vendor

The Sample Dataset Litmus Test

Before signing a long-term deal, it’s always a good idea to understand a data vendor in detail. So, start your collaboration with a requirement of a sample dataset that you will pay for.

This could be a small volume of dataset to assess if they’ve understood your requirements, have the right procurement strategies in place, their collaboration procedures, transparency and more. Considering the fact that you would be in touch with multiple vendors at this point, this will help you save time on deciding a provider and finalize on who is ultimately better suited for your needs.

Check If They Are Compliant

By default, most training data service providers comply with all regulatory requirements and protocols. However, just to be on the safe side, enquire about their compliances and policies and then narrow down your selection.

Ask About Their QA Processes

The process of data collection by itself is systematic and layered. There is a linear methodology that is implemented. To get an idea of how they operate, ask about their QA processes and enquire whether the datasets they source and annotate are passed through quality checks and audits. This will give you an
idea on whether the final deliverables you would receive are machine-ready.

Tackling Data Bias

Only an informed customer would ask about bias in training datasets. When you’re speaking to training data vendors, talk about data bias and how they manage to eliminate bias in the datasets they generate or procure. While it’s common sense that it is difficult to eliminate bias completely, you could still know the best practices they follow to keep bias at bay.

Are They Scalable?

One-time deliverables are good. Long-term deliverables are better. However, the best collaborations are those that support your business visions and simultaneously scale their deliverables with your increasing

So, discuss if the vendors you’re speaking to can scale up in terms of data volume if a need arises. And if they can, how the pricing strategy will change accordingly.


Do you want to know a shortcut to find the best AI training data provider? Get in touch with us. Skip all these tedious processes and work with us for the most high-quality and precise datasets for your AI models.

We check all the boxes we’ve discussed so far. Having been a pioneer in this space, we know what it takes to build and scale an AI model and how data is at the center of everything.

We also believe the Buyer’s Guide was extensive and resourceful in different ways. AI training is complicated as it is but with these suggestions and recommendations, you can make them less tedious. In the end, your product is the only element that will ultimately benefit from all this.

Don’t you agree?

Let’s Talk

  • By registering, I agree with Shaip Privacy Policy and Terms of Service and provide my consent to receive B2B marketing communication from Shaip.