Filter By:

  • Machine learning has probably the most mixed definitions and interpretations in the world. What arrived as a buzzword a few years ago continues to baffle a lot of people thanks to the way it’s been portrayed and presented.

    Read More

    Artificial Intelligence (AI) is ambitious and immensely beneficial for the advancement of humankind. In a space like healthcare, especially, artificial intelligence is bringing about remarkable changes in the ways we approach the diagnosis of diseases, their treatments, patient care, and patient monitoring. Not to forget the research and development involved in the development of new drugs, newer ways to discover concerns and underlying conditions, and more.

    Read More

    Healthcare, as a vertical, was never static. But then, it hasn’t been this dynamic ever, with the confluence of disparate medical insights, making us stare inanimately at piles of unstructured data. To be honest, the gargantuan volume of data isn’t even an issue anymore. It’s a reality, which even exceeded the 2,000 Exabyte mark by the end of 2020.

    Read More

    Artificial intelligence is the technology that empowers machines to mimic human behaviors. It is all about teaching machines how to learn and think autonomously and use results to react and respond accordingly.

    Read More

    Every time your GPS navigation system asks you to take a detour to avoid traffic, realize that such precise analysis and results come after several hundreds of hours of training. Whenever your Google Lens app accurately identifies an object or a product, understand that thousands after thousands of images have been processed by its AI (Artificial Intelligence) module for exact identification.

    Read More

    4 Basic Things To Know About Data De-identification, With data generation happening at the rate of 2.5 quintillion bytes every day, we as internet users generated almost 1.7MB every single second in 2020.

    Read More

    Now that the entire planet is online and connected, we are collectively generating immeasurable quantities of data. An industry, a business, market segment, or any other entity would view data as a single unit. Still, as far as individuals are concerned, data is better referred to as our digital footprint.

    Read More

    Quality data translates to success stories while poor data quality makes for a good case study. Some of the most impactful case studies on AI functionality have stemmed from a lack of quality datasets. While companies are all excited and ambitious about their AI ventures and products, the excitement doesn’t reflect on data collection and training practices. With more focus on output than training, several businesses end up delaying their time to market, losing funding, or even pulling down their shutters for eternity.

    Read More

    A process to annotate or tag generated data, this allows machine learning and artificial intelligence algorithms to efficiently identify each data type and decide what to learn from it and what to do with it. The more well-defined or labeled each data set is, the better the algorithms can process it for optimized results.

    Read More

    Alexa, is there a sushi place near me? Oftentimes, we often ask open-ended questions to our virtual assistants. Asking questions like these to fellow humans is understandable considering this is how we are used to speaking and interacting. However, asking a very casual question colloquially to a machine that hardly has any grasp of language and conversational intricacies doesn’t make any sense right?

    Read More

    Well, behind every such surprising incident, there are concepts in action like artificial intelligence, machine learning, and most importantly, NLP (Natural Language Processing). One of the biggest breakthroughs of our recent times is NLP, where machines are gradually evolving to understand how humans talk, emote, comprehend, respond, analyze and even mimic human conversations and sentiment-driven behaviors. This concept has been highly influential in the development of chatbots, text-to-speech tools, voice recognition, virtual assistants, and more.

    Read More

    Despite being a concept introduced in the 1950s, Artificial Intelligence (AI) did not become a household name until a couple of years back. The evolution of AI has been gradual and it has taken almost 6 decades to offer the insane features and functionalities it does today. All this has been immensely possible due to the simultaneous evolution of hardware peripherals, tech infrastructures, allied concepts like cloud computing, data storage and processing systems (Big Data and analytics), the penetration and commercialization of the internet, and more. Everything together has led to this amazing phase of tech timeline, where AI and Machine Learning (ML) are not just powering innovations but becoming inevitable concepts to live without as well.

    Read More

    Every AI system needs massive volumes of quality data to train and deliver accurate results. Now, there are two keywords in this sentence - massive volumes and quality data. Let’s discuss both individually.

    Read More

    All conversations and discussions so far on the deployment of artificial intelligence for business and operations purposes have only been superficial. Some talk about the benefits of implementing them while others discuss how an AI module can increase productivity by 40%. But we hardly address the real challenges involved in incorporating them for our business purposes.

    Read More

    It is hard to imagine fighting a global pandemic without technologies such as Artificial Intelligence (AI) and Machine Learning (ML). The exponential rise of Covid-19 cases around the world left many health infrastructures paralyzed. However, institutions, governments, and organizations were able to fight back with the help of advanced technologies. Artificial intelligence and machine learning, once seen as a luxury for elevated lifestyles and productivity, have become life-saving agents in combating Covid thanks to their innumerable applications.

    Read More

    Pain is experienced more intensely among certain groups of people. Studies have shown that individuals from minority and underprivileged groups tend to experience more physical pain than the general population due to stress, overall health, and other factors.

    Read More

    Before you even plan to procure the data, one of the most important considerations in determining how much you should spend on your AI training data. In this article, we will give you insights to develop an effective budget for AI training data.

    Read More

    Shaip is an online platform that focuses on healthcare AI data solutions and offers licensed healthcare data designed to help construct AI models. It provides text-based patient medical records and claims data, audio such as physician recordings or patient/doctor conversations, and images and video in the form of X-rays, CT scans, and MRI results.

    Read More

    Data is one of the most important elements in developing an AI algorithm. Remember that just because data is being generated faster than ever before doesn’t mean the right data is easy to come by. Low-quality, biased, or incorrectly annotated data can (at best) add another step. These extra steps will slow you down because the data science and development teams must work through these on the way to a functional application.

    Read More

    Much has been made about the potential for artificial intelligence to transform the healthcare industry, and for good reason. Sophisticated AI platforms are fueled by data, and healthcare organizations have that in abundance. So why has the industry lagged behind others in terms of AI adoption? That’s a multifaceted question with many possible answers. All of them, however, will undoubtedly highlight one obstacle in particular: large amounts of unstructured data.

    Read More

    However, what appears simple is tedious to develop and deploy like any other complex AI system. Before your device could recognize the image that you capture and the Machine Learning (ML) modules could process it, a data annotator or a team of them would have spent thousands of hours annotating data to make them understandable by machines.

    Read More

    In this special guest feature, Vatsal Ghiya, CEO and co-founder of Shaip, explores the three factors that he believes will allow data-driven AI to reach its full potential in the future: the talent and resources necessary to construct innovative algorithms, an immense amount of data to accurately train those algorithms, and ample processing power to effectively mine that data. Vatsal is a serial entrepreneur with more than 20 years of experience in healthcare AI software and services. Shaip enables the on-demand scaling of its platform, processes, and people for companies with the most demanding machine learning and artificial intelligence initiatives.

    Read More

    Processes in Artificial Intelligence (AI) systems are evolutionary. Unlike other products, services, or systems in the market, AI models don’t offer instant use cases or immediately 100% accurate results. The results evolve with more processing of relevant and quality data. It’s like how a baby learns to talk or how a musician starts by learning the first five major chords and then builds on them. Achievements are not unlocked overnight, but training happens consistently for excellence.

    Read More

    Whenever we talk about Artificial Intelligence (AI) and Machine Learning (ML), what we instantly imagine are powerful tech companies, convenient and futuristic solutions, fancy self-driving cars, and basically everything that is aesthetically, creatively, and intellectually pleasing. What hardly gets projected to people is the real world behind all the conveniences and lifestyle experiences offered by AI.

    Read More

    An exclusive interview where Utsav, Business Head - Shaip interacts with Sunil, Executive Editor, My Startup to brief him on how Shaip enhances human life by solving the problems of the future with its Conversational AI and Healthcare AI offerings. He further states how AI, ML is set to revolutionize the way we do business and how Shaip will contribute to the development of next-generation technologies.

    Read More

    The Covid-19 pandemic may have created economic uncertainty, but it’s a testament to the incredible excitement surrounding AI innovation that investments in the space largely weathered the storm: Just 7 percent of investments decreased, and 16 percent were temporarily suspended in 2020, while 47 percent remained unchanged and 30 percent were set to increase.

    Read More

    Artificial Intelligence (AI) is making our lifestyles better through better movie recommendations, restaurant suggestions, resolving conflicts through chatbots, and more. The power, potential, and capabilities of AI are increasingly being put to good use across industries and in areas that nobody probably thought of. In fact, AI is being explored and implemented in areas such as healthcare, retail, banking, criminal justice, surveillance, hiring, fixing wage gaps, and more.

    Read More

    We’ve all seen what happens when AI development goes awry. Consider Amazon’s attempt to create an AI recruiting system, which was a great way to scan résumés and identify the most qualified candidates — provided those candidates were male.

    Read More

    The healthcare industry was put to the test last year due to the pandemic, and a lot of innovation shone through—from new drugs and medical devices to supply-chain breakthroughs and better collaboration processes. Business leaders from all areas of the industry found new ways to accelerate growth to support the common good and generate critical revenue.

    Read More

    We’ve seen them in films, we’ve read about them in books and we’ve experienced them in real life. As sci-fi as it may seem, We have to face the facts – facial recognition is here to stay. The tech is evolving at a dynamic rate and with the diverse use cases that are popping up across industries, the wide range of developments of facial recognition simply appear to be inevitable and infinite.

    Read More

    Multilingual chatbots are transforming the business world. Chatbots have come a long way since their early stages, where they’d provide simple one-word answers. A chatbot can now chat fluently in dozens of languages, allowing businesses to expand into a wider global marketplace.

    Read More

    Healthcare is often thought of as an industry on the cutting edge of technological innovation. That’s true in many ways, but the healthcare space is also highly regulated by sweeping legislation such as GDPR and HIPAA, along with many more local guidelines and restrictions.

    Read More

    A 2018 report revealed that we generated close to 2.5 quintillion bytes of data every single day. Contrary to popular belief, not all the data we generate can be processed for insights.

    Read More

    Artificial intelligence is getting smarter by the day. Today, powerful machine learning algorithms are within reach of normal businesses, and algorithms requiring processing power that would once have been reserved for massive mainframes can now be deployed on affordable cloud servers.

    Read More